Sobolev seminorm of quadratic functions with applications to derivative-free optimization
نویسنده
چکیده
This paper studies the H1 Sobolev seminorm of quadratic functions. The research is motivated by the least-norm interpolation that is widely used in derivative-free optimization. We express the H1 seminorm of a quadratic function explicitly in terms of the Hessian and the gradient when the underlying domain is a ball. The seminorm gives new insights into least-norm interpolation. It clarifies the analytical and geometrical meaning of the objective function in least-norm interpolation. We employ the seminorm to study the extended symmetric Broyden update proposed by Powell. Numerical results show that the new thoery helps improve the performance of the update. Apart from the theoretical results, we propose a new method of comparing derivative-free solvers, which is more convincing than merely counting the numbers of function evaluations.
منابع مشابه
The use of inverse quadratic radial basis functions for the solution of an inverse heat problem
In this paper, a numerical procedure for an inverse problem of simultaneously determining an unknown coefficient in a semilinear parabolic equation subject to the specification of the solution at an internal point along with the usual initial boundary conditions is considered. The method consists of expanding the required approximate solution as the elements of the inverse quadrati...
متن کاملOn the Complexity of Bandit and Derivative-Free Stochastic Convex Optimization
The problem of stochastic convex optimization with bandit feedback (in the learning community) or without knowledge of gradients (in the optimization community) has received much attention in recent years, in the form of algorithms and performance upper bounds. However, much less is known about the inherent complexity of these problems, and there are few lower bounds in the literature, especial...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملPerturbing the Logarithmic Sobolev Inequality for Unbounded Spin Systems on the Lattice with Non Quadratic Interactions
Abstract. We consider unbounded spin systems on the one dimensional Lattice with interactions that go beyond the usual strict convexity and without uniform bound on the second derivative. We assume that the one dimensional without interactions (boundary-free) measure satisfies the Log-sobolev inequality and we determine conditions under which the Log-Sobolev Inequality can be extended to the in...
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 146 شماره
صفحات -
تاریخ انتشار 2014